Amalgamated Codazzi Raychaudhuri identity for foliation

نویسنده

  • Brandon Carter
چکیده

It is shown how a pure background tensor formalism provides a concise but explicit and highly flexible machinery for the generalised curvature analysis of individual embedded surfaces and foliations such as arise in the theory of topological defects in cosmological and other physical contexts. The unified treatment provided here shows how the relevant extension of the Raychaudhuri identity is related to the correspondingly extended Codazzi identity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covariant Generalisation of Codazzi-raychaudhuri and Area Change Equations for Relativistic Branes

In this paper we derive the generalisations of Gauss-Codazzi, Raychaudhuri and area change equations for classical relativistic branes and multidimensional fluids in arbitrary background manifolds with metricity and torsion. The kinematical description we develop is fully covariant and based on the use of projection tensors tilted with respect to the brane worldsheets.

متن کامل

PARAMETRIC MANIFOLDS I : Extrinsic Approach Stuart

A parametric manifold can be viewed as the manifold of orbits of a (regular) foliation of a manifold by means of a family of curves. If the foliation is hypersurface orthogonal, the parametric manifold is equivalent to the 1-parameter family of hypersurfaces orthogonal to the curves, each of which inherits a metric and connection from the original manifold via orthogonal projections; this is th...

متن کامل

PARAMETRIC MANIFOLDS I: Extrinsic Approach

A parametric manifold can be viewed as the manifold of orbits of a (regular) foliation of a manifold by means of a family of curves. If the foliation is hypersurface orthogonal, the parametric manifold is equivalent to the 1-parameter family of hypersurfaces orthogonal to the curves, each of which inherits a metric and connection from the original manifold via orthogonal projections; this is th...

متن کامل

COHEN-MACAULAY HOMOLOGICAL DIMENSIONS WITH RESPECT TO AMALGAMATED DUPLICATION

In this paper we use "ring changed'' Gorenstein homologicaldimensions to define Cohen-Macaulay injective, projective and flatdimensions. For doing this we use the amalgamated duplication of thebase ring with semi-dualizing ideals. Among other results, we prove that finiteness of these new dimensions characterizes Cohen-Macaulay rings with dualizing ideals.

متن کامل

Weyl Anomaly and Initial Singularity Crossing

We consider the role of quantum effects, mainly, Weyl anomaly in modifying FLRW model singular behavior at early times. Weyl anomaly corrections to FLRWmodels have been considered in the past, here we reconsider this model and show the following: The singularity of this model is weak according to Tipler and Krolak, therefore, the spacetime might admit a geodesic extension. Weyl anomaly correcti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996